
Hierarchical Replication Techniques to Ensure Checkpoint Storage Reliability in
Grid Environment

Fatiha Bouabache*
fatiha.bouabache@lri.fr

Thomas Herault*
thomas.herault@lri.fr

Gilles Fedak*
fedak@lri.fr

Franck Cappello*
fci@lri.fr

: INRIA Futurs/Laboratoire de Recherche en Informatique
Universite Paris Sud-XI

91405 ORSAY, FRANCE

Abstract
As High Performance platforms (Clusters, Grids, etc.)

continue to grow in size, the average time between failures
decreases to a critical level. An efficient and reliable fault
tolerance protocol plays a key role in High Performance
Computing. Rollback recovery is the most common fault
tolerance technique used in High Performance Computing
and especially in MPI applications. This technique relies on
the reliability of the checkpoint storage. Most of the rollback
recovery protocols assume that the checkpoint servers ma-
chines are reliable. However, in a grid environment any unit
can fail at any moment, including components used to con-
nect different administrative domains. Such failures lead to
the loss of a whole set of machines, including the more reli-
able machines used to store the checkpoints in this adminis-
trative domain. Thus it is not safe to rely on the high MTBF
(Mean Time Between Failures) of specific machines to store
the checkpoint images. This paper introduces a new co-
ordinated checkpoint protocol, which tolerates checkpoint
server failures and clusters failures, and ensures a check-
point storage reliability in a grid environment. To provide
this reliability the protocol is based on a replication pro-
cess. We propose new hierarchical replication strategies,
with two different degrees of hierarchy, adapted to the topol-
ogy of cluster of clusters. Our solution exploits the locality
of checkpoint images in order to minimize inter-cluster com-
munication. We evaluate the effectiveness of our two hier-
archical replication strategies through simulations against
several criteria such as topology and scalability .

1. Introduction

High Performance Computing plays an important role
in scientific and engineering researches. As the size of
HPC systems increases continuously, the average time be-

tween failures becomes increasingly small. So fault toler-
ance becomes a critical property for parallel applications
running on these systems. MPI (Message Passing Interface)
is amongst the most frequently used paradigm to write par-
allel application. However, in traditional implementations,
when a failure occurs, the whole distributed application is
shutdown and has to be restarted mannualy [24]. A tech-
nique to avoid the restart of the application from the begin-
ning is rollback recovery [13] which is based on the concept
of checkpoint.

With coordinated checkpoint protocols, all the processes
are synchronized and take their image at the same time,
building a coherent state and a global image of the system
called the snapshot. A snapshot is a collection of check-
point images (one per process) with the state of the differ-
ent communication channels [11]. Rollback/recovery pro-
tocol imposes that when a failure occurs, all the processes
rollback together to the last coherent state. The main ad-
vantage of this approach is that the application is not im-
pacted by the protocol between two consecutive checkpoint
waves. When processes rollback, the checkpoint images of
all the processes must be available simultaneously. Usu-
ally, checkpoint images are kept for the two last checkpoint
waves in order to spare storage resources. If the checkpoint
images are not available, the rollback technique fails. Proto-
cols often assume that checkpoint storage relies on special
dedicated and reliable machines named Checkpoint Servers
(CS).

A Grid is an infrastructure consisting of the aggregation
of several distributed resources, usually from different ad-
ministrative domains. There are many kind of Grids, and
we focus in this study on cluster of clusters: companies and
universities build large supercomputers by aggregating the
resources of several clusters. Using such a Grid, users ex-
pect to obtain larger systems more suitable to address the

Eighth IEEE International Symposium on Cluster Computing and the Grid

978-0-7695-3156-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CCGRID.2008.95

475

complexity of their problems. One of the features of a Grid
is its size, orders of magnitude larger than a single cluster.
This also means that the probability that one component in
the Grid is subject to failure is great. Moreover, the Grid
that we consider spans multiple domains and uses Internet
to connect between the different clusters. So a set of fail-
ures can disconnect a whole cluster, including its reliable
components, from the rest of the system. In a single cluster,
if the failure hits the switch or the interconnection mecha-
nism, all components set disconnected from the others and
the failure may be considered as fatal. In a Grid, however,
the amount of resources lost by the failure of a router may
be tolerable. But no machine can be considered as reliable
anymore.

In this paper, we ensure the checkpoint storage service
reliability of coordinated rollback/recovery protocols. We
assume that any component in the system can fail, and we
handle checkpoint server failures and cluster disconnection.
To this purpose, we propose to replicate the checkpoint
images over a set of checkpoint servers distributed over
the different clusters. We introduce hierarchical replication
strategies suited for cluster of clusters and for the hierarchi-
cal topology of such environment, called Simple Hierarchi-
cal Repliaction SHR and Greedy Hierarchical Repliaction
GHR.

The paper is organized as follows. Section 2 presents the
Grid and failure models we consider. Section 3 presents the
related works. Section 4 introduces our protocol for dis-
tributed checkpoint storage. Section 5 introduces our hier-
archical replication strategies. We evaluate performances of
our approach and we compare the two different replication
techniques in section 6. Last, we conclude in section 7 with
a short summary of the presented work and a brief overview
of future work.

2. System Model

We consider a HPC Grid made of powerful computer
servers. We also consider the Grid environment as an ag-
gregation of C clusters, each cluster i including Ni ma-
chines. To store the checkpoint images, we define in each
cluster a set of checkpoint servers. Thus, in a cluster, we
have two kinds of processes : client processes that carry out
calculation and transfer regularly their checkpoint images
to the storage service and checkpoint servers (CS) that in-
sure the checkpoint storage. All checkpoint servers within
the same cluster are pooled in a group. The different clus-
ters are linked over front-end machines. Fig.1 illustrates the
architecture of our system.

We assume that any component of the system can fail at
any time, and we consider that there exists a coordinated
checkpoint protocol which handles the failures of clients.
Therefore, we propose a solution to handle the checkpoint
servers failures to ensure the storage service reliability even

when a checkpoint server fails. We consider two types of
behaviors:

• a failure may hit a checkpoint server in a cluster.

• a failure may hit the cluster’s front-end machine, or a
set of failures disconnects a whole cluster from the rest
of the Grid. For the clusters which remain connected,
all the components of the cluster fail simultaneously.
We call a group failure.

To increase the protocol flexibility, we make the follow-
ing assumptions :

• We consider a group failure if we loose any connection
with the checkpoint servers of this group (e.g.: a front-
end failure). We suppose that at most K group failures
hit the system, with 0 ≤ K ≤ C − 1.

• In the case of a group failure, the computation which
was executed in this cluster is restarted on a new one.

• We suppose that for a number of checkpoint servers
ni in group i, 0 ≤ i ≤ C − 1, at a given moment,
there cannot be more than ki checkpoint servers fail-
ures, 0 ≤ ki < ni.

These numbers are fixed according to the mean time be-
tween failures in the system. They are parameters to the
algorithm.

Figure 1. System Architecture

Our solution relies on a distributed checkpoint service.
To ensure the checkpoint service reliability, we use a repli-
cation protocol. We replicate Checkpoint images over
checkpoint servers, so that a valid replica is available even
though any checkpoint server failure. To tolerate ki fail-
ures in a group i, 0 ≤ i ≤ C − 1, we must have at least
ki + 1 replicas in this group. To tolerate a group failure,
we also replicate the checkpoint images outside the clus-
ter which hold them. So, to tolerate K group failures, with

476

0 ≤ K ≤ C − 1, we replicate the checkpoint images over
K + 1 different groups. At the worse case possible, when
K = C − 1 and in each group i ki = ni − 1, each CS in the
system holds a copy of all replicas.

3. Related Works

In checkpoint-based protocols, during the execution the
computation state is periodically saved. Then when a fail-
ure occurs, the computation is restarted from the last saved
state. Checkpoint based protocols can be classified into two
categories: coordinated checkpointing and uncoordinated
checkpointing [4]. The first coordinated checkpointing pro-
tocol for distributed applications was proposed by Chandy
and Lamport in [11]. This solution assumes that all the
channels are FIFO and any process can decide to initiate a
checkpoint wave. This algorithm is implemented in many
fault tolerant message passing libraries, such as LAMMPI
[5], MPICH-V [4]. Other techniques like Checkpoint In-
duced Communication [1] try to bound the size of the co-
ordinated set to build the global coherent snapshot. This
technique has also been implemented in other fault-tolerant
libraries, like the proactive communication library [3]. All
thesetechniques assume the ability to store the checkpoint
images in a reliable media which is not subject to failures.

Other checkpoint based solutions exist without relying
on stable storage, [26] introduces a diskless checkpointing
solution. This solution defines a way to perform fast, incre-
mental checkpointing by using N+1 parity, which reduces
high memory overhead required by diskless checkpointing
methods. However, after a failure, all processors communi-
cate with the parity, which can cause a communication bot-
tleneck. Others distribute the checkpoint images directly in
the memory of the computing peers, like for the FT-MPI
project [12], or the Charm++ project [30]. However, stor-
ing the checkpoint image in the memory of the other pro-
cesses implies either to use twice the memory necessary
for the application or remove the transparency assumption
and to use user-driven serialization of the checkpoint image.
[19] describes disk-based and memory-based checkpointing
fault tolerance schemes. The goal of this solution is to auto-
mate the checkpointing and the restarting of the tasks, and
thus to avoid writing additional code. These schemes are
based on the works presented in [18] and [21]. In [9] a
new solution based on the assumption that some failures are
predictable is introduced. It pro-actively migrates execution
from processors suspected to fail. This solution is based on
processor virtualization and dynamic task migration ideas
provided by [22] and [18]. [8] introduces a fault tolerance
protocol that provides fast restarts. This protocol uses the
concepts of message logging and processor virtualization.
It does not assume the existence ofreliable component that
never fails.

The goal of the replication services is to keep the states

of the different replicas coherent, by implementing the ade-
quate primitives. The two major classes of replication tech-
niques ensuring this consistency are: active replication [16]
and passive replication [25]. Simple replication is not fit to
ensure the calculation nodes fault tolerance for high per-
formance computing. Indeed, to tolerate n failures every
component must be replicated n times. Thus, the com-
putation resources are divided by n. However, replication
mechanism is widely used to ensure the accessibility of data
in fault tolerance protocols. [27] considered distributing
generic data on the Grid using distributed hash tables, and
evaluated the efficiency of this approach for storing check-
point images for fault tolerance. However, this technique is
not focused on the coordinated checkpoint protocols, which
induce a peak overload on the EDG network, and we believe
that hierarchical techniques are more suited than DHTs for
our topology. [7] and [6] introduce solutions to ensure
availability of some failures points (e.g. the head node of a
cluster architecture) using redundancy. These solutions are
based on the asymmetric and symmetric Active/Active High
availability. Active/Active High availability means that sev-
eral replicas are active in the same time. Wherease in the
asymmetric one there is no coordination between the active
replicas, in the symmetric one the active replicas maintain a
common global component state.

In the context of data Grid technology, replication is
mostly used to reduce access latency and bandwidth con-
sumption. The existing replication strategies proposed in
this direction attempt to maximize locality of the file. [17]
uses the replication to ensure efficient and fast access to
huge distributed data. For that, it introduces a set of repli-
cation management services and protocols. The replication
decisions are made according to a cost model based on a
set of factors such as run-time read/write statistics. [28]
presents a dynamic Grid replication strategy which tries to
reduce data access time. This paper defines a new form
of locality, called network-level locality. Although the re-
quired file is not in the site performing job, the replica is
located in the site having broad bandwidth to the site of
job execution. To reduce access latency, [29] presents the
FreeLoader framework, which aggregates unused desktop
storage space and I/O bandwidth into a shared cache/scratch
space, for hosting large, immutable datasets and exploiting
data access locality.

To take the replication decisions, such as when to cre-
ate a replica and where to store it, the different solutions are
based on a set of factors and basically on the locality and the
access frequency. In our work, we need neither a replica-
tion cost to take the replication decisions, nor a consistency
property to keep the different replicas coherent. The repli-
cation decisions are made according to our protocol scheme
and topology.

477

4. Checkpoint Storage Protocol
Our checkpoint storage protocol is based on a distributed

checkpointing service. To guarantee the reliability of this
service we use a replication concept. This protocol proceeds
in two phases: the recording phase is responsible for im-
ages storage, and the recovery phase executed when a fail-
ure occurs on some calculation nodes, and during which the
checkpoint images for the last valid wave are downloaded.

4.1. The Recording Phase
The recording phase proceeds in two steps. First (send-

ing step), clients send their images to the checkpoint servers
within the same cluster. Second (replication step), those im-
ages are replicated amongst the CS group within the local
cluster, and in remote clusters.

In order to balance the load between the different CSs,
image sending is made in a distributed way. A checkpoint
image is split in several parts of fixed size called chunks.
We call ckj

c the chunk number j of the checkpoint image
of the client c client . During the building of the check-
point image, the client builds his chunks and sends them to
the checkpoint servers of its cluster according to a round
robin technique. So the client memorizes a list of check-
point servers that received at least one of its chunks. At the
end, the client keeps a local copy of its checkpoint image,
sends to all the checkpoint servers on its cluster the finalize
message containing the number of chunks. The image is
considered safely stored when the client receives acknowl-
edgments (ACKs) for all its chunks from the checkpoint
servers, which means that the replication is finished.

If the client detects a checkpoint server failure before
the reception of the corresponding ACK, it selects another
server in its group and resends the corresponding chunks.
If the client fails during the transfer, the checkpoint wave
cancelled, a new resource equivalent is allocated, and the
application is restarted from its last checkpoint.

In the second step, chunks are replicated on the check-
point servers. We consider that a chunk ck is correctly repli-
cated in the group i if and only if ck is replicated on ki + 1
servers in this group. According to the assumption on the
number of tolerated failures, ck is considered recorded, if it
is correctly replicated in K + 1 groups. So, a checkpoint
server receiving a chunk from the client has to ensure its
recording before sending the ACK to the client.

At the end of the recording phase the CS has to check if
all the clients of the same distributed application have cor-
rectly recorded their images, then validate locally the check-
point wave.

4.2. The Recovery Phase
In the beginning of the recovery phase, a consensus is

executed between the different CS to define the last valid
wave. We define our consensus problem as follows. Each
CS proposes the number of its last valid wave, and the

Figure 2. Example of execution

goal is to decide the best agreement (the greatest number
of checkpoint wave). Fisher et al. [15] proved the impossi-
bility of distributed consensus with one faulty process. This
result is essentially based on the fact that it is difficult to de-
termine whether a process has crashed or is just very slow.
Therfore, adding failure detectors would solve this prob-
lem. chandra et al. [10] show that a weak failure detector w
is sufficient to solve consensus in asynchronous systems if
and only if n > 2f (n is the number of process in the sys-
tem and f is the maximum number of failure). According
to Kesteloot [23], a stronger failure detectors model allows
f < n , it requires that at least one correct process is never
suspected to be failed. That is why, we use a B model [10]
that satisfies the following two properties:

• 1. There is a time after which every process that failed
is always suspected by all correct processes.

• 2. There is a time after which some correct process is
never suspected by a majority of the processes.

So, we define in each CS s a module that keeps a list l of
CS that thinks has failed. Then, in the begining of the con-
sensus, each module sends its list to the authers. A module
of s receiving these lists has to update its list. ie. if a CS
s′ is in the list l and do not exist in one auther received list,
then it is removed from the list. Because that is means that
s′ is simply very slow(according to the property one). Ac-
cording to the property two we can be sure that a consensus
will be executed by some correct process.

As several checkpoint wave can be done before failure,
the client starts by asking for the number of the last valid
wave, and checks whether the image is available locally.
Otherwise, the client requests its image from the Check-
point Servers within its cluster. The client has to receive
with the checkpoint wave number, a list of the CSs sus-
pected to be failed. As for the recording, recovery is done
in a distributed way: the client sends its request of recovery
to all the CS of its group, excepted those in the list. Then
a CS receiving the request provides chunks of which is pri-
mary. Finally, once all the chunks are recovered, the image
is reconstituted, and the client is restarted.

478

5. Replication Strategies

We have adapted the passive replication technique : each
checkpoint server receiving a chunk ckj

c from the client c
becomes primary of this chunk, and must ensure its repli-
cation. The checkpoint servers are organized on a circular
list, where each checkpoint server of a group i has a m-bits
identifier from 0 to (2m − 1). So when a checkpoint server
s primary of a certain number of chunks fails, a new server,
the next in the list (s + 1)mod[m], is selected to become
primary of all the chunks of s.

During the replication step, a CS can play several roles
according to the origins of the received chunks. A CS s
of a group i which receives a chunk from the client is con-
sidered primary for this chunk. The CS s is responsible
of the correct replication of this chunk in its group and on
K different groups, before sending the acknowledgement
to the client (ACKf in figure 2). If a CS receives a chunk
from a CS s′ �= s from another group i′ i′ �= i, it is con-
sidered as a pseudo-primary of this chunk in the group i′.
It is then responsible to replicate the chunk in the group i′

and to send the acknowledgement to the primary s (ACKg

in figure 2). The last role, intermediary is played by a CS
when it receives a chunk from another CS within its group.
In this case, the CS sends directly the acknowledgement to
the primary or to the pseudo-primary (ACK1, ACK2, and
ACK3 in figure 2). During the replication step, the chunks
received from clients have the greatest priority, than those
received from the other CSs, and finally those received from
the other clusters.

5.1. Simple Hierarchical Replication Strat-
egy

With Simple Replication Strategy, the primary CS does
the replication over all the other CSs of its group, then over
the other groups. Then each pseudo-primary does the repli-
cation over all the other CSs of its group. So a CS s receiv-
ing a chunk ck from a client or from another group sends it
to (s + i)mod[2m], 1 ≤ i < 2m. With this technique, an in-
termediary CS has no active role in the replication process.

5.2. Greedy Hierarchical Replication Strat-
egy

To accelerate the replication process, we introduce an-
other strategy. Its goal is that each CS in the system
has an active role, including the intermediary ones. For
that we define for each CS s a set of CSs with identifiers
{s, s + 20, s + 21, · · · , s + 2m−1} called children. Fig.2
presents a diagram of an execution of the replication step
with this strategy. The primary server of a chunk ckj

c repli-
cates it on the children servers which constitute the first
level of replication, then, each CS receiving this chunk must
replicate it over its own children servers, carrying on that
way until all the CS have received the chunk. To avoid

replicating a chunk twice on the same CS, a request is sent
before each replication (the third step in Fig.2).

During the execution of a checkpoint wave, two cases
may happen : 1) the execution finishes without any CS
failure, and 2) some checkpoint servers fail before the end
of the wave. So when a checkpoint server s primary of a
chunk ck fails during the replication a new primary s′ =
(s+1)mod[2m] is selected to handle the primary chunks of
s. A client detecting the failure of s before the reception of
the ck acknowledgement, sends the chunk again to the new
primary s′.

The new primary s′ will check the replication status be-
fore the breakdown. In the replication was started before the
failure, s′ has already received ck from s, sends a request to
collect the acknowledgements from the other CSs to know if
they have received the chunk from the last primary. When a
CS in the same group receives this request, it acknowledges
the previous reception of the chunk, or asks for it in case it
has not received it before. When a CS from another group
receives this request, it checks the previous reception of the
chunk, then it verifies if a correct replication was made in
its group before sending an acknowledgment to the primary,
otherwise, it asks for it.

6. Performance Evaluation

We study our solution using the SimGrid [20] simu-
lator. SimGrid provides the main functionalities for the
simulation of distributed applications in heterogeneous dis-
tributed environments. It facilitates the research in the area
of distributed and parallel application scheduling on dis-
tributed computing platforms ranging from simple network
of workstations to Computational Grids. We particularly
use MSG, the first distributed programming environment
provided within SimGrid. It allows us to study the differ-
ent heuristics of the issues before the implementation.

The use of the simulation makes it possible, in the first
stage, to validate our solution and to carry out a compari-
son between the two replication strategies in order to decide
which one will be used in the implementation. For each
curve presented here, several experimentations have been
conducted. Each one with different numbers of clients and
servers, and we have observed the same result. The choice
of the clients and servers numbers was limited by the actual
Simgrid implantation that do not support a great number of
components

6.1. Simulation Architecture

One of the main objectives of this study is to examine our
protocol behavior in realistic architecture which approaches
the structure of the Grid as closely as possible. We sup-
pose that the Checkpoint Servers of a group are connected
between them through a complete graph. The number of
CS is small, so we will have a realistic number of connec-

479

tions to manage. However, for the inter clusters connec-
tions, we choose a graph much less connected, where each
checkpoint server will only have one outgoing connection.
For all the experimentation, the links within a cluster are
homogenous, as are the checkpoint servers and the clients.
The internal communication links are faster than the exter-
nal communication ones.

6.2. Impact of the Replication
Our goal is to study the potential impact of the repli-

cation process,and how to reduce it. To evaluate the two
replication strategies, we first investigated the effect of the
checkpoint servers number in the system. For doing this,
we fixed the clients number k = 200 and we varied the
CSs number s. Figure 3 shows that the execution time of
the checkpoint wave, particularly the replication phase in-
creases considerably and proportionally with the checkpoint
servers number. Theoretically, the execution time t of the
replication phase is:

t =
kxl

N
− kxl

sN

So when the CS number s increases the execution time of
the replication phase increases.

To compare the effect of the SHR versus the GHR, we
fixed the clients number and the chunks number per client,
and we varied the CSs number. Then we launch two series
of executions with the two strategies. These experiments
are carried out to decide which replication strategy will be
used in the implementation. As we can see in Fig.4, the
best replication strategy depends on the number of check-
point servers. The GHR does additional checks for the
presence of chunks onto the secondary checkpoint servers
before each sending. As we give the first priority to the
chunks received from clients, and every checkpoint server
received data from clients when CSs number is low, the
additional checks increase needlessly the execution time,
which makes the SHR better than the GHR. However, when
the checkpoint servers increases, the GHR allows overlap-
ping of communications to secondary CSs, and so the ac-
celeration of the replication phase. We observe that when
the simple replication is better, the difference is small be-
cause the size of check messages is smaller than the size of
chunks.

6.3. Impact of the Topology

Then, we investigated the clients number scalability, and
thus the size of the data to be stored. For that, we fixe the
cluster and the checkpoint servers numbers in the system (
c = 1 cluster and s = 6 checkpoint servers), and we vary
the clients number. As the CSs servers number is small we
used the simple hierarchical replication technique. The first
measurement in Fig.5 (the checkpoint wave) presents the

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(V

irt
ua

l t
im

e
un

it)

Number of Checkpoint Servers

checkpoint wave completion time
client communication time

Figure 3. Impact of the Replication

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

tim
e

(s
ec

on
ds

)

number of checkpoint server

Simple replication strategy
Greedy replication strategy

Figure 4. Comparison between hierarchical
and simple replication

wave execution time according to the number of clients. We
notice that the execution time is proportional to the number
of clients. This is not surprising since more clients means a
larger quantity of data to store and to replicate, and thus the
wave of checkpoint takes more time. To identify which one
of the two steps of the recording phase (the sending or the
replication) influences more the execution time, we isolated
the sending one. The corresponding measurement in Fig.5,
shows that the execution time of the sending step increases
slowly. This is expected, because in theory this step is exe-
cuted in a parallel way and it takes xl/N time unit (where
x is the number of chunks per client, l the size of a chunk,
and N the link capacity) whatever the clients number is. In
practice, the observed increasement is due to the saturation
of the communication links. So the growing of the check-
point wave execution time when a clients number increases
is caused by the replication step execution time. In theory

480

the execution time t of the replication phase is:

t =
kxl

N
(s − 1)

Thus when the clients number k increases the execution
time of the replication phase increases proportionally.

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

number of clients

checkpoint wave completion time
client communication time

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

on
ds

)

number of clients

checkpoint wave completion time
client communication time

Figure 5. Scalability of the number of clients

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

tim
e

(s
ec

on
ds

)

number of clusters

checkpoint wave completion time

Figure 6. Impact of the topology

The goal of the second experimentation is to evaluate the
impact of the network topology, ie. the number of clusters
in the Grid. So, we consider a fixed number of clients k =
100, a fixed number of checkpoint servers s = 30, and we
varied the number of clusters c. Thus, there is k/c clients
and s/c servers in each cluster; every client has x chunks
of size l. The links have a capacity of N MB/s within a
cluster and N ′ MB/s between clusters. Theoretically, the
checkpoint wave over c clusters takes the time t:

t =
xl

N
+

2xkl

N
+

xkl

sN
+

xkl

N ′ − 1
c
(
xkl

N
+

xkl

N ′) − cxkl

sN

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1 2 3 4 5 6 7 8 9 10

tim
e

(s
ec

on
ds

)

number of clusters

client communication time

Figure 7. Impact of the topology on the send-
ing step

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

tim
e

(s
ec

on
ds

)

number of clusters

local replication completion time

Figure 8. Impact of the topology on the Repli-
cation step

The first measurement in Fig.6 presents the result of this
second experimentation. We observe that the checkpoint
wave execution time increases according to the number of
clusters, but with more than 7-10 clusters it becomes sta-
ble. As we said before, the internal communication links
are faster than the external ones. So when the number of
clusters increases the number of external links increases too,
which increases the checkpoint wave completion time. But
after to a certain number of clusters, the clients and the CS
numbers within clusters become so small that the external
communications dominate the internal ones, which makes
a plateau in the curve. To understand the resulting curve
we isolated the recording phase in Fig.7, and the local repli-
cation in Fig.8). When the cluster number increases, the
number of clients per cluster decreases, and thus the record-

481

ing phase execution time decreases. However, although the
number of checkpoint servers per cluster decreases, the exe-
cution time of the local replication increases, this is caused
by the overlapping between this phase and the rest of the
execution.

Although the execution time of the recording phase
should be fixed, increasing the number of clients or decreas-
ing the number of checkpoint servers makes the recording
phase more aggressive, in the sense that the size of data
to be stored increases or the number of storage devices de-
creases which causes communication bottleneck.

To confirm our analysis about the external communica-
tions and the internal ones, we did a similar experimentation
in which we fixed the CSs and the clients numbers per clus-
ter, and we varied the clusters number. The resulting curve
Fig.9 shows that the checkpoint wave completion time is
proportional to the number of clusters . Which is expected
because the number of external communications increases
and the number of internal communications within a cluster
remain constant.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8

tim
e(

se
co

nd
s)

number of clusters

checkpoint wave completion time

Figure 9. Impact of the topology (2)

7. Conclusions
An efficient and reliable fault tolerance protocol plays

a key role in High Performance Computing and especially
in MPI applications. Rollback recovery is the most used
technique in such environments. To ensure a high level of
fault tolerance, the rollback recovery techniques rely on the
availability of checkpoint images at rollback time. Roll-
back/recovery protocols often assume that Checkpoint stor-
age is made by special dedicated and reliable machines
named Checkpoint servers. In a Grid, however, no machine
can be considered as reliable anymore, since even machines
with a high MTBF are located inside a cluster which may
be entirely disconnected from the rest of the Grid.

In this work we propose a new checkpoint storage proto-
col for a Grid environment which tolerate checkpoint server

failures and clusters failures. To ensure the checkpoint stor-
age reliability we introduced hierarchical replication strate-
gies, SHR and GHR, suited for cluster of clusters. As the
topology experimentations show, the external communica-
tions are too expensive. With our replication strategies we
reduce as far as possible the external communications. Af-
ter a failure every client will download locally its image
whatever the CSs failures. The only case where we will
download from another cluster is when we have a cluster
failure. We compared, a SHR, where a checkpoint server re-
ceiving image from a client uploads this image to each and
every one of the checkpoint servers within its cluster; and a
GHR one, where checkpoint servers synchronize with each
others within its group to ensure the replication. This com-
parison shows that the strategy choice depends on the sys-
tem topology, particularly the number of checkpoint servers
and the number of client. The different experimentation
show that the execution time of the replication phase takes
much more time than the recording one. A long time of
checkpoint wave execution decreases the checkpoint wave
frequency. To avoid this we propose to consider the check-
point wave as done when the recording phase is finished.
So, a checkpoint server sends the acknowledgments when
it received the data, then it does the replication. Thus we
increase the checkpoint wave frequency. If a checkpoint
server fails before the end of the replication, and some data
is lost, we cancel this step, and we consider the last wave for
which the replication is successfully finished. For the future
work, first we will evaluate our approach via an experimen-
tation in a real experimental Grid. Data Grids implement
fault tolerant replication of data as a standard feature. The
SRB (Storage Resource Broker) manages distributed data
in a Grid, it uses a logical name space to represent multiple
physical storage systems. So, we think that SRB data Grids
provide many of the required features to the implementation
of our strategy, and we project to use this middleware, and
basically certain services to implement our service with the
selected strategy. Then, we plan to propose a new schedul-
ing scheme to improve the performances of our protocol..

References

[1] L. Alvisi, E. Elnozahy, S. Rao, S. Husain, and A. Mel.
An analysis of communication induced checkpointing. In
Proceedings of the symposium on fault-tolerant computing,
pages 242–249, 1999.

[2] I. M. Author. Some related article I wrote. Some Fine Jour-
nal, 99(7):1–100, January 1999.

[3] Baude, Caromel, Delbe, and Henrio. A hybrid message
logging-CIC protocol for constrained checkpointability. In
EUROPAR: Parallel Processing, 11th International EURO-
PAR Conference. LNCS, 2005.

[4] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and
F. Cappello. Mpich-v: a multiprotocol fault tolerant mpi.

482

International Journal of High Performance Computing and
Applications, 20(8):319–333, fall 2006.

[5] G. Burns, R. Daoud, and J. Vaigl. LAM: An open cluster
environment for MPI. 1994.

[6] C. L. C. Engelmann, S. L. Scott and X. He. Symmetric ac-
tive/active high availability for high-performance Journal of
Computers (JCP), 2006.

[7] T. L.-S. L. S. C. Leangsuksun, V. K. Munganuru and C. En-
gelmann. Asymmetric active-active high availability for In
Proceedings of the 2nd International Workshop on Operat-
ing Systems, Programming Environments and Computing on
Clusters (COSET-2), in conjunction with the 19th ACM

[8] S. Chakravorty and L. V. Kalé. A fault tolerance protocol
with fast faultrecovery. In IPDPS, pages 1–10. IEEE, 2007.

[9] S. Chakravorty, C. L. Mendes, and L. V. Kalé. Proactive
fault tolerance in MPI applications via task migration. In
Y. Robert, M. Parashar, R. Badrinath, and V. K. Prasanna,
editors, HiPC, volume 4297 of Lecture Notes in Computer
Science, pages 485–496. Springer, 2006.

[10] Chandra, Hadzilacos, and Toueg. The weakest failure detec-
tor for solving consensus. JACM: Journal of the ACM, 43,
1996.

[11] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM
Transactions on Computer Systems (TOCS), 3(1):63–75,
feb 1985.

[12] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun,
G. Bosilca, and J. Dongarra. Building fault survivable MPI
programs with FT-MPI using diskless-checkpointing. In Pro-
ceedings of the tenth ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), pages
213–223, Chicago, IL, USA, June 2005.

[13] Elnozahy, Alvisi, Wang, and Johnson. A survey of rollback-
recovery protocols in message-passing systems. CSURV:
Computing Surveys, 34, 2002.

[14] A. N. Expert. A Book He Wrote. His Publisher, Erewhon,
NC, 1999.

[15] Fischer, Lynch, and Paterson. Impossibility of distributed
consensus with one faulty process. JACM: Journal of the
ACM, 32, 1985.

[16] R. Guerraoui and A. Schiper. Software based replication for
fault tolerance. IEEE Computer, 30(4):68–74, apr 1997.

[17] E. D. Houda Lamehamedi, Boleslaw Szymanski and
Z. Shentu. Data replication strategies in grid environments.
In ICA3PP ’02: Proceedings of the Fifth International Con-
ference on Algorithms and Architectures for Parallel Pro-
cessing, page 378, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[18] C. Huang, O. S. Lawlor, and L. V. Kale. Adaptive MPI.
In L. Rauchwerger, editor, Languages and Compilers for
Parallel Computing, (16th LCPC’03), volume 2958 of Lec-
ture Notes in Computer Science (LNCS), pages 306–322.
Springer-Verlag (New York), College Station, Texas, USA,
Oct. 2003, Revised Papers 2004.

[19] C. Huang, G. Zheng, L. V. Kalé, and S. Kumar. Performance
evaluation of adaptive MPI. In J. Torrellas and S. Chatter-
jee, editors, PPOPP, pages 12–21. ACM, 2006.

[20] INRIA. Simgrid project. http://simgrid.gforge.inria.fr.

[21] L. V. Kale. The virtualization approach to parallel program-
ming: Runtime optimization and the state of art. In LACSI,
Albuquerque, 2002.

[22] L. V. Kale and S. Krishnan. CHARM++. In G. V. Wilson
and P. Lu, editors, Parallel Programming in C++, Scientific
and Engineering Computation Series, pages 175–214? MIT
Press, Cambridge, MA, 1996. chapter 5.

[23] L. Kesteloot. Fault-tolerant distributed consensus. JACM:
Journal of the ACM, 1995.

[24] E. Lusk. Fault tolerance in MPI programs, dec 2002.
[25] F. B. S. N. Budhiraja, K. Marzullo and S. Toueg. The

primary-backup approach. 1993.
[26] J. S. Plank and K. Li. Faster checkpointing with N +1 parity.

In FTCS, pages 288–297, 1994.
[27] L. Rilling and C. Morin. A practical transparent data shar-

ing service for the grid. In Proc. Fifth International Work-
shop on Distributed Shared Memory (DSM 2005), Cardiff,
UK, May 2005. Held in conjunction with CCGrid 2005.

[28] Y.-B. K. Sang-Min Park, Jai-Hoon Kim. Dynamic grid repli-
cation strategy based on internet hierarchy. In Conference:
Grid and cooperative computing, 2003.

[29] S. S. Vazhkudai, X. Ma, X. Ma, V. W. Freeh, J. W. Strickland,
J. W. Strickland, N. Tammineedi, and S. L. Scott. Freeloader:
Scavenging desktop storage resources for scientific data. In
SC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, page 56, Washington, DC, USA, 2005.
IEEE Computer Society.

[30] G. Zheng, L. Shi, and L. V. Kale. Ftc-charm++: an
in-memory checkpoint-based fault tolerant runtime for
charm++ and mpi. In CLUSTER ’04: Proceedings of the
2004 IEEE International Conference on Cluster Computing,
pages 93–103, Washington, DC, USA, 2004. IEEE Com-
puter Society.

483

